

Presentation to CERC Expert Group

29th July, 2019

Setting the context

- Status of regulations
- General scope of a QCA

Analysis of performance

Case for aggregation

Experience as a QCA

Issues and suggestions

Status of DSM Regulations RECONNECT Regulator Forum of CERC Regulators SERC's (FOR) Model Applies to Inter-state regulations sale of Act as a guide power

to SERC

Tamil Nadu Telangana Karnataka* Rajasthan Andhra Gujarat Pradesh* Chattisgarh **Jharkhand** MP Maharashtra Different accuracy Aggregation

bands

allowed

*DSM collected

Utility Scale

Capacity that we work on

~ 6,000 MW

REMC - RLDC and SLDC (11)

~ 4000 MW + Demand (Trial basis)

MW Scale (Wind & Solar)

As QCA:

Karnataka ~ 5,200 MW (132 PSS, 350+ Generators)

Rajasthan ~3,600 MW

AP ~750 MW

MP ~1700 MW

Gujarat* ~ 1800 MW

Maharashtra* ~ 900 MW

In other states:

~ 1,500 MW

* Registration as QCA in progress; estimated capacity

REMC - Functional Architecture

Forecasting Tool (FT)

GRIDConnect

How it Works?

Static Data

- Historical generation/demand data
- SCADA Data (turbine/inverter level)
- Grid Data (size, load zones, load profiles etc.)

Dynamic Data

- Weather Forecast
- Real-time generation/demand data

Special Events Data

- Plant maintenance info
- Special events like elections, holidays, festivals, local events etc.
- Grid back-downs, load shedding etc.

DATA INTEGRATION

All types of OEM specific SCADA/Meter data through API, OPC, ODBC, FSP/SFTP, HTTP/HTTPs. MySQL/MSSQL/NoSQL

A Cloud Based application. Have also been deployed at Client's site in some of the large utility scale projects.

APPLICATION MANAGEMENT

Private Clients

Wind/Solar Project Owners, Project Developers, OEMs

Wind/Solar Production Forecasts (intraday, day-ahead, week-ahead)

Grid Operators,
Distribution Licensees,
Conventional Power Producers

Wind/Solar Production Forecasts, Electric Demand Forecasts (intraday, day-ahead, week-ahead)

General scope of a QCA

- Historical Weather/SCADA Data integration
- Actual Generation/SCADA Data Integration
- Calibrated, non-calibrated forecast & intra-day revisions
- Forecast data, generator specific availability data, weather data integration
 - Coordination with SLDC, RE OEMs, RE Generators
 - **Hardware Layer** meter/weather data integration
 - Integration of Input Data Layer (wind farm SCADA, Pooling Station SCADA, Meter Data etc.)
 - Communication Channel with DISCOMs, SLDC, OEMs and RE Generators

- Information
- MIS, data reporting, data checks & balancing, quality control
- Generator, SLDC, OEM, RE Farm specific modules

- **De-pooling &** Settlement
- Intra-State RE DSM Settlement with SLDC and
- Individual S/S or Generating Units

General Roles & Responsibilities

	Forecasting & Scheduling	Commercial settlement	DSM Charges
RE Generators	 Pay payment security as determined by SLDC Work with/ assign responsibility to plant operator 		Pay DSM charges to QCA within timelines specified by SLDC
Broader O&M Contract	Create forecasts and schedule the power with SLDC	 Review and reconcile DSM statements De-pool DSM amounts 	Pay DSM charges to SLDC (only after receipt of the same from Generators)
Plant operator/ OEM	 Provide: real-time SCADA data site information relating to maintenance, outages, etc (AvC) month end meter data 		

DSM Impact

On receipt of static details and generation data for past 2-3 months

Real time generation is shared by generator with a lag of less than 30 minutes

Update about any activity affecting available capacity

Solar/Wind forecast is aggregated and sent to SLDC

Preliminary Model

Real Time Data

AvC Info
Updation

Aggregation

Expected DSM: Paisa/Unit

~ 2.5 - 7.5

~ 1.0 - 2.5

~0.8 - 1.0

< 0.1 (>1000 MW)

Key issues/ suggestions:

- Aggregation
- Develop metering, data sharing protocol
- Standardisation of QCA's scope of work
- Enhance infrastructure/ tech at LDCs
- Allow more frequent revisions (upto 96; at par with conventional; need tech to enable)

Why Aggregation?

Case for aggregation:

- For grid operations:
 - Higher accuracy
 - Pooling Sub-station size vary widely from 5 MW to >500 MW
 - Achieving high accuracy at small PSS is impossible even with very responsive models and high-quality data
 - At the same time, variation at a small PSS have no impact on the grid (most RE states have > 10,000 MW grid)
 - Significantly higher accuracy for day-ahead better for grid operations and planning
 - Aggregation provides a much higher accuracy for day-ahead forecasts
 - This is significantly more useful for SLDC/ Discom's for planning
 - Ease of use of data

Why Aggregation?

For RE generators:

- High variation within 1.5 hour time-blocks
 - Very high variation is observed during low wind season (for wind) and monsoon (for solar)
 - This variation cannot be scheduled due to regulatory constraints
 - Such intermittency is plant specific and does not impact the overall grid, but has a very high cost impact on generators
- Data intermittency/ AVC issues
 - Data lag and breaks cause forecasts to be revised without actual change in generation
 - This may give wrong picture of the plant/ have high DSM charges, without impacting the grid
- Only states that allow aggregation have been able to collected DSM charges

High Fluctuations at Small PSS

- Despite a very responsive model and high quality data, errors still persist due to:
 - Significant fluctuations within 1.5 hour range
 - Very small size of pooling stations
- High DSM charges for RE generator as a result

Data Intermittency and AvC Issues Impact Accuracy

- Data intermittency of individual site has a significant impact on accuracy and DSM cost, but may have no impact on grid operations
- AvC reporting is very patchy, especially on sites with AD clients (personnel, site ops issues)
- Examples of small sites with data intermittency

Gujarat - Aggregate Accuracy of Wind Capacity

Gujarat Aggregate Forecasting Accuracy

- Accuracy at state level was significantly higher as compared to that of individual PSS
- Average day-ahead accuracy was 83% (based on revised accuracy range)
- Average DSM charge (R-16 basis) was <0.1 p/u compared to wind (3.9 p/u) and solar (1.8 p/u) on a standalone basis

Gujarat - Accuracy of Individual PSS

Note: Different axis on both graphs

Karnataka - Aggregate Accuracy

Note: Different axis on both graphs

Karnataka - Accuracy of Individual PSS

 Average DSM charge (R-16 basis) was <0.5 p/u compared to wind (6 p/u; small project as an example)

Issues faced:

- Scope of work of a QCA
 - Scope of work of QCA expanded beyond the normal F&S activities in many states
 - Examples:
 - MP: Recording and transmitting LVRT data
 - TN & Maharashtra: 24 hour control center with voice recording facility; "complete control" over injection feeders
 - TN: Responsibility for giving effect to curtailment
 - MP: "Any other charges" to be collected/ settled by QCA
 - o QCA's do not have skills, infrastructure and site-presence for these activities
 - Need to rationalise and standardize scope of work of the QCA

Issues faced:

Metering

- Meter data collection is the responsibility of the QCA
- Lack of AMR results in this requiring physical presence at sites
- Some states also require "weekly" meter data (eg. TN, MAH); this is impractical
- QCA's/ developers should be allowed to instal modems/ data communication on revenue meters
 - Several advantages meter data available on real-time basis with SLDC
 - Higher accuracy (as RT data will be available to QCA as well)
 - Faster DSM calculation and settlement process

Issues faced:

- Data availability
 - Many sites have poor/ no data availability
 - Various reasons for this old sites, infra issues, poor communication network availability
 - Results in poor accuracy/ high DSM charges
 - Possible solutions:
 - Share meter data/RTU data with QCA
 - Allow installation of modem on revenue meters
 - Aggregation

Case Studies - Impact of Meter Data

Two weeks F&S performance with partial SCADA

Two weeks F&S performance with real-time meter data

Issues faced:

- De-pooling
 - Most states require generators to depool charges based on mutually agreed methodology
 - We have seen very little consensus on this
 - Also resulting in disputes due to varying availability of RT data
 - Example of wind and solar sites in Rajasthan & MP
 - Depooling methodology may be prescribed in the regulations
 - Eg: Gujarat

Issues faced:

- Infrastructure for scheduling
 - Every state has a different portal/ format/ procedure for schedule submission
 - Eg: Gujarat each PSS to be submitted separately
 - Rajasthan, AP, Karnataka all have different file formats
 - No state as API/ FTP based submission
 - Results in operational complexity
 - Likely to be standardised after the REMC project

Regulatory Issues - Summary

Rajasthan (Challenged in Raj HC & RERC)	 Methodology for adjustment of intra and inter-state power. Billing on schedule. Lack of proper metering infrastructure. Virtual pool not being addressed in the regulation. No clarity on depooling methodology. 	
Madhya Pradesh (Amendement proposed by MPERC, challenged in MP HC)	 Procedures not notified by Hon'ble MPERC No clarity on the number of revisions applicable. Virtual pool not being addressed in the regulation. Partial or no data availability at several pooling stations. Payment security 	
Maharashtra (Proposed to be challenged in Mah HC*) * basis discussions with RE generators	 Setting up round the clock Control Room and take complete control of over feeders connected to pooling station(s). Mandatory setting up of communication protocol with each generator under QCA's scope. Weekly DSM settlement. Imposition of UI based DSM at state periphery. Billing on schedule. Irrational payment security charges (Rs 50,000/MW for wind and Rs 25,000/MW for solar). 	

Service Portfolio

Transactions Management

- 45% market share in Environmental Markets (Renewable Energy Credits, Energy Saving Certificates - ESCERTs)
 - ~3GW Portfolio Size, 440 clients
- ~200MW of Green Energy Transactions facilitated between buyers and sellers
 - 83 Clients

Predictive Analytics

- 55% market share Wind/Solar Forecasting in IPP category clients.
 - o ~14 GW Forecasting Portfolio, 910 active clients
- ~100% market share of wind/solar forecasting for utility scale projects in India
 - Awarded all 11 <u>Renewable Energy Management Centers</u> (REMCs) at national level.
 - o Project is under execution. Expected to go-live by Mid 2019 across India.
- Ongoing Demand Forecasting Trials with all the major grid operators in India

Data Collection/Exchange

Cutting across the entire value chain of Indian Power Market

1430+ B2B Clients, 11 Grid Operators

Best Indian Start-up, Indo-German Boot Camp (GIZ), Social Impact Lab - Berlin, Germany

Top 30 Global Energy Start-ups, NewEnergy Expo-2017, Astana, Kazakhstan

Top 50 Indian Start-ups, The Smart CEO - 2016, Bangalore, India

Best Wind Energy Forecaster of the Year (2014/15/16/17/18), Indian Wind Energy Forum

Technology Start-up Enterprise of the Year (Energy & Utilities) - 2017, 24MRC Network, India

Top 100 Global Energy Start-ups, Start-up energy transition Awards, Berlin, Germany

Digital India Awards, Digital Energy Solutions - 2017, Times Network, India

Industrial IoT Awards, IoTNext2017, Bangalore

Smart Startup of the Year, ISGF 2018, New Delhi, India

Outstanding Contribution in the field of IoT, IPPAI Power Awards 2018

Equity Partner

- India's First Cleantech Venture Fund
- An MNRE + IIM Ahmedabad initiative
- Core Focus To promote innovation in Indian Cleantech space with focus on Energy & Renewables
- Key venture fund partners of INFUSE are...

Ministry of New and Renewable Energy

Experience:

- Audit & Finance
- Power Markets
- IT and Machine Learning

Education:

- Columbia Univ USA
- RSM the Netherlands
- IIT Bombay, India
- Uni. of Manchester, UK

Aim: A Global Leader in **Digital Energy Services**

Demand-Supply Aggregation

Grid Management Solutions

Predictive Analytics

